Necessary and Sufficient Optimality Conditions in DC Semi-infinite Programming
نویسندگان
چکیده
This paper deals with particular families of DC optimization problems involving suprema convex functions. We show that the specific structure this type function allows us to cover a variety in nonconvex programming. Necessary and sufficient optimality conditions for these are established, where some structural features conveniently exploited. More precisely, we derive necessary (global local) semi-infinite programming cone-constrained optimization, under natural constraint qualifications. Finally, penalty approach abstract is developed last section.
منابع مشابه
Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions
This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [5) from our viewpoint of robust Lipschitzian stability. We present me...
متن کاملNecessary Optimality and Duality for Multiobjective Semi-infinite Programming
The aim of this paper is to deal with a class of multiobjective semi-infinite programming problem. For such problem, several necessary optimality conditions are established and proved using the powerful tool of K − subdifferential and the generalized convexity namely generalized uniform ( , , , ) K F d α ρ − − convexity. We also formulate the Wolf type dual models for the semi-infinite programm...
متن کاملNecessary and Sufficient Optimality Conditions for Fuzzy Linear Programming
This paper is concerned with deriving necessary and sufficient optimality conditions for a fuzzy linear programming problem. Toward this end, an equivalence between fuzzy and crisp linear programming problems is established by means of a specific ranking function. Under this setting, a main theorem gives optimality conditions which do not seem to be in conflict with the so-called Karush-Kuhn-Tu...
متن کاملOptimality Conditions and Duality in Minmax Fractional Programming, Part I: Necessary and Sufficient Optimality Conditions
The purpose of this paper is to develop a fairly large number of sets of global parametric sufficient optimality conditions under various generalized (F, b, φ, ρ, θ)univexity assumptions for a continuous minmax fractional programming problem involving arbitrary norms.
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Optimization
سال: 2021
ISSN: ['1095-7189', '1052-6234']
DOI: https://doi.org/10.1137/19m1303320